7 research outputs found

    Fuzzy Image Segmentation Algorithms in Wavelet Domain

    Get PDF

    Wavelet Transform Fuzzy Algorithms for Dermoscopic Image Segmentation

    Get PDF
    This paper presents a novel approach to segmentation of dermoscopic images based on wavelet transform where the approximation coefficients have been shown to be efficient in segmentation. The three novel frameworks proposed in this paper, W-FCM, W-CPSFCM, and WK-Means, have been employed in segmentation using ROC curve analysis to demonstrate sufficiently good results. The novel W-CPSFCM algorithm permits the detection of a number of clusters in automatic mode without the intervention of a specialist

    Melanoma and Nevus Skin Lesion Classification Using Handcraft and Deep Learning Feature Fusion via Mutual Information Measures

    No full text
    In this paper, a new Computer-Aided Detection (CAD) system for the detection and classification of dangerous skin lesions (melanoma type) is presented, through a fusion of handcraft features related to the medical algorithm ABCD rule (Asymmetry Borders-Colors-Dermatoscopic Structures) and deep learning features employing Mutual Information (MI) measurements. The steps of a CAD system can be summarized as preprocessing, feature extraction, feature fusion, and classification. During the preprocessing step, a lesion image is enhanced, filtered, and segmented, with the aim to obtain the Region of Interest (ROI); in the next step, the feature extraction is performed. Handcraft features such as shape, color, and texture are used as the representation of the ABCD rule, and deep learning features are extracted using a Convolutional Neural Network (CNN) architecture, which is pre-trained on Imagenet (an ILSVRC Imagenet task). MI measurement is used as a fusion rule, gathering the most important information from both types of features. Finally, at the Classification step, several methods are employed such as Linear Regression (LR), Support Vector Machines (SVMs), and Relevant Vector Machines (RVMs). The designed framework was tested using the ISIC 2018 public dataset. The proposed framework appears to demonstrate an improved performance in comparison with other state-of-the-art methods in terms of the accuracy, specificity, and sensibility obtained in the training and test stages. Additionally, we propose and justify a novel procedure that should be used in adjusting the evaluation metrics for imbalanced datasets that are common for different kinds of skin lesions

    Written Documents Analyzed as Nature-Inspired Processes: Persistence, Anti-Persistence, and Random Walks—We Remember, as Along Came Writing—T. Holopainen

    No full text
    Written communication is pivotal for societies to develop. However, lexicon and depth of information vary greatly among texts according to their purpose. Scientific texts, diffusion of science reports, general and area-specific news are all written differently. Thus, we explore the characterization of different text categories through a nature-inspired feature known as the Hurst parameter. We contend that the Hurst exponent is useful to unveil the rhetorical structure within written documents. We collected and processed texts in five categories: scientific articles, diffusion of science reports, business news, entertainment news, and random texts. Each category contains 350 documents. We found that the median for scientific texts has the highest value of the Hurst parameter (0.575), followed by business news (0.54); the median for randomly-generated texts is 0.48, which lies in the region associated with random walks. The median value for diffusion texts is 0.49, and for entertainment texts is 0.53. However, these two categories present high dispersion. We conclude that the Hurst parameter is a measure that quantifies the structure of communication in the selected categories of texts. Application of our finding in the field of e-research is discussed
    corecore